Sexual dimorphism and dietary composition of the sandfish lizard Scincus scincus (Linnaeus, 1758) of southeastern Algeria


  • Hayet Laoufi Laboratory of Genetic, Biotechnology and Valorization of Bioresources (LGBVB), University of Biskra, Biskra 07000, Algeria
  • Aicha Mouane
  • Aouimeur Souad
  • Merabti Brahim
  • Mehaoua Mohamed Seghir


Scincus scincus, sexual dimorphism, diet, prey size, El-Oued


In this study, we present the first data on the sexual dimorphism and diet of a typical desert lizard species, Scincus scincus, in the region of El-Oued, southeastern Algeria. The objective was to characterize the types of prey in the diet and determine whether there is a correlation between prey size and body size in males and females. The results obtained reveal that out of the 115 individuals captured (43 males and 72 females), sexual dimorphism is observed. Males tend to be larger than females, with males exhibiting relatively larger snout-vent length, head height, head length, and jaw length compared to females. However, no difference is recorded in terms of head width. The analysis of stomach contents allowed us to identify 485 prey items distributed among 9 prey categories, all attributed to insects. Coleoptera was the most commonly ingested prey category, accounting for 61.54% of stomachs, 59.79% of total prey items, and 62.41% of total volume. A similar diet was observed between females and males of S. scincus, with a high diet overlap (O = 0.99) and a low diversity of prey types ingested by both males (Ba = 0.17) and females (Ba = 0.19). Coleoptera represented the most dominant order in the skink's diet, followed by the Hymenoptera order. Generally, the remaining seven taxa were consumed in low proportions by both sexes. Additionally, we observed no significant difference between the number of prey consumed and the volume of prey between the sexes, and no correlation was found between morphometric characteristics, diet composition, and prey volume.


Al-Sadoon M., Al-Johany, A. & Al-Farraj, S. (1999). Food and feeding habits of the sand fish lizard Scincus mitranus. Saudi Journal of Biological Sciences, 6(1): 91-100. https://10.1016/j.sjbs.2017.11.004

Arab K. & Doumandji, S.E. (2003). Etude du régime alimentaire de la Tarente de Mauritanie Tarentola mauritanica (Linné. 1758)(Gekkonidae) et le psammodrome algire Psammodromus algirus (Linné. 1758)(Lacertidae) dans un milieu sub-urbain près d'Alger. Bulletin de la Société herpétologique de France, (106): 10-16.

Arcos V.H., Sanabria Urbán, S. & Cueva del Castillo, R. (2017). The interplay between natural and sexual selection in the evolution of sexual size dimorphism in Sceloporus lizards (Squamata: Phrynosomatidae). Ecology and Evolution, 7(3): 905-917. https://doi:10.1002/ece3.2572

Babelhadj B., Thorin, C., Benaïssa, A. & Guintard, C. (2021). Etude biométrique du Scinque officinal ou «poisson de sable» Scincus scincus (Linnaeus, 1758): analyse du dimorphisme sexuel de la sous-espèce S. s. scincus (Linnaeus, 1758) de la région d'El Oued Souf (Algérie). Revue suisse de Zoologie, 128(1): 85-92.

Bombi P., Scalera, R., Bologna, M. & Vignoli, L. (2005). Food habits of Podarcis filfolensis (Reptilia, Lacertidae) on a small Mediterranean island during the dry season. Amphibia-Reptilia, 26(3): 412-417. https://doi:10.1163/156853805774408694

Brannelly L.A., Ohmer, M.E., Saenz, V. & Richards‐Zawacki, C.L. (2019). Effects of hydroperiod on growth, development, survival and immune defences in a temperate amphibian. Functional Ecology, 33(10): 1952-1961.

Brewster C.L., Gifford, M., Ortega, J. & Beaupre, S.J. (2021). Analyzing Time-Energy Constraints to Understand the Links between Environmental Change and Local Extinctions in Terrestrial Ectotherms. The American Naturalist, 198(6): 719-733.

Carretero M.A. (2004). From set menu to a la carte. Linking issues in trophic ecology of Mediterranean lacertids. Italian Journal of Zoology, 71(S2): 121-133.

Ciracì A., Razzetti, E., Pavesi, M. & Pellitteri-Rosa, D. (2022). Preliminary data on the diet of Chalcides chalcides (Squamata: Scincidae) from Northern Italy. Acta Herpetologica, 17(1): 71-76.

Cooper Jr W.E. & Vitt, L.J. (2002). Distribution, extent, and evolution of plant consumption by lizards. Journal of Zoology, 257(4): 487-517.

Cox R.M., Skelly, S.L. & John‐Alder, H.B. (2003). A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution, 57(7): 1653-1669. https://10.1111/j.0014-3820.2003.tb00371.x

de Fraga R., P. Santos-Jr, A., P. Werneck, F., C. Costa, H., T. Guimarães, J., Perez, R., Graboski Mendes, R., Mott, T., Vaz-Silva, W. & Ribeiro, S. (2022). The overlooked underground diversity: physical and chemical edaphic structure predict morphological variation in South American amphisbaenians (Squamata: Amphisbaenidae). Studies on Neotropical Fauna and Environment: 1-13.

Du W.-G., Ji, X., Zhang, Y.-P., Xu, X.-F. & Shine, R. (2005). Identifying sources of variation in reproductive and life-history traits among five populations of a Chinese lizard (Takydromus septentrionalis, Lacertidae). Biological Journal of the Linnean Society, 85(4): 443-453.

Guariento R.D., Luttbeg, B., Carneiro, L.S. & Caliman, A. (2018). Prey adaptive behaviour under predation risk modify stoichiometry predictions of predator‐induced stress paradigms. Functional Ecology, 32(6): 1631-1643.

Kadry M.A.M. (2019). Morphological, genetic and feeding habits diversity of the common sand fish, Scincus scincus in two different habitats in egypt. ciencia-e-tecnica, 34(8): 151-178.

Kaliontzopoulou A., Carretero, M.A. & Llorente, G.A. (2007). Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation in Podarcis lizards. Journal of morphology, 268(2): 152-165. https://doi:10.1002/jmor.10494

Kaliontzopoulou A., Carretero, M.A. & Llorente, G.A. (2008). Head shape allometry and proximate causes of head sexual dimorphism in Podarcis lizards: joining linear and geometric morphometrics. Biological Journal of the Linnean Society, 93(1): 111-124.

Khezzani B., Bouchemal, S. & Halis, Y. (2016). Some agricultural techniques to cope with the fluctuation of the groundwater level in arid environments: Case of the Souf Oasis (Algerian Sahara). Journal of Aridland Agriculture, 2(2016): 26-30.

Krebs C. (1999). Ecological Methodology 2nd ed. Addison Welsey educational Publishers Inc. under the Benjamin/Cummings imprint, Menlo Park (California). 620.

Liang T., Shi, L., Bempah, G. & Lu, C.-h. (2021). Sexual size dimorphism and its allometry in Chinese lizards. Evolutionary Ecology, 35: 323-335.

Mesquita D.O. & Colli, G.R. (2003). The ecology of Cnemidophorus ocellifer (Squamata, Teiidae) in a neotropical savanna. Journal of Herpetology, 37(3): 498-509.

Millon A., Nielsen, J.T., Bretagnolle, V. & Møller, A.P. (2009). Predator–prey relationships in a changing environment: the case of the sparrowhawk and its avian prey community in a rural area. Journal of Animal Ecology, 78(5): 1086-1095.

Mori A.S., Isbell, F. & Seidl, R. (2018). β-diversity, community assembly, and ecosystem functioning. Trends in ecology & evolution, 33(7): 549-564.

Mouane A., Laoufi, H., Aouimeur, S., Harrouchi, A., Bekkar, C. & Sadine, S.E. (2022). First record of scorpion in the diet of the common skink Scincus scincus (Linnaeus, 1758) in the northern Sahara of Algeria (Squamata: Scincidae). Revista ibérica de aracnología, (40): 222-224.

Nel K., Rimbach, R. & Pillay, N. (2015). Dietary protein influences the life‐history characteristics across generations in the African striped mouse Rhabdomys. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 323(2): 97-108.

Palmeira C.N.S., Gonçalves, U., Sales, R.F.D. & Freire, E.M.X. (2021). Foraging behavior and diet composition of the gecko Phyllopezus periosus (Squamata: Phyllodactylidae) in the Brazilian semiarid Caatinga. Cuadernos de Herpetología, 35(2): 261-272. https://doi:10.31017/CdH.2021.(2021-017

Paray B.A., Al-Mfarij, A.R. & Al-Sadoon, M.K. (2018). Food habits of the Arabian skink, Scincus hemprichii Wiegmann, 1837,(Sauria: Scincidae), in the Southwest Saudi Arabia. Saudi Journal of Biological Sciences, 25(1): 90-93.

Pianka E.R. (2017). Ecology and natural history of desert lizards: analyses of the ecological niche and community structure, Princeton University Press.

Pianka E.R. & Vitt, L.J. (2003). Lizards: windows to the evolution of diversity, Univ of California Press.

Pincheira Donoso D. & Hunt, J. (2017). Fecundity selection theory: concepts and evidence. Biological Reviews, 92(1): 341-356. https://doi:10.1111/brv.12232

Puga y Colmenares M.C., Ramírez-Bautista, A., Cruz-Elizalde, R., García-Rosales, A. & Hernández-Salinas, U. (2019). Feeding ecology and its relationship with head structures in two populations of the lizard Sceloporus minor (Squamata: Phrynosomatidae) from Northern Mexico. Copeia, 107(3): 542-549.

Rastegar-Pouyani N. & Mohammad, R.G. (2016). Study of the Lizard Fauna of Central and Southern Iraq with Special Reference on Trapelus ruderatus (Sauria: Agamidae).

Sales R.F., Ribeiro, L.B., Jorge, J.S. & Freire, E.M. (2012). Feeding habits and predator-prey size relationships in the whiptail lizard Cnemidophorus ocellifer (Teiidae) in the semiarid region of Brazil. south American Journal of herpetology, 7(2): 149-156.

Shine R., Reed, R., Shetty, S. & Cogger, H. (2002). Relationships between sexual dimorphism and niche partitioning within a clade of sea-snakes (Laticaudinae). Oecologia, 133: 45-53.

Taverne M., Fabre, A.C., King‐Gillies, N., Krajnović, M., Lisičić, D., Martin, L., Michal, L., Petricioli, D., Štambuk, A. & Tadić, Z. (2019). Diet variability among insular populations of Podarcis lizards reveals diverse strategies to face resource‐limited environments. Ecology and Evolution, 9(22): 12408-12420.

Toumi I., Medila, I. & Bendif, H. (2022). Effect of Drying Method on Biochemical Composition and Nutritional Quality of Sandfish (Scincus Scincus) Consumed in South-East Algeria. Journal of Bioresource Management, 9(3): 7.

Vihar B., Wolf, C., Boehme, W., Fiedler, F. & Baumgartner, W. (2015). Respiratory physiology of the sandfish (Squamata: Scincidae: Scincus scincus) with special reference to subharenal breathing. Salamandra, 51(4): 326-334.

Vitt L.J. (2000). Ecological consequences of body size in neonatal and small-bodied lizards in the neotropics. Herpetological Monographs: 388-400.

Withers P. & Thompson, G. (2005). Size-free shape differences between male and female Western Australian dragon lizards (Agamidae). Amphibia-Reptilia, 26(1): 55-63.

Zhao W. & Liu, N. (2013). Sexual dimorphism of head size in Phrynocephalus przewalskii: testing the food niche divergence hypothesis. Asian Herpetological Research, 4: 242-247.






Animal Science