Effect of Zinc Oxide Nanoparticles on Proso Millet Seedlings
Keywords:
proso millet, zinc nanoparticles, seedling growthAbstract
Proso millet (Panicum miliaceum L.) from the family Poaceae is one of the six major cereals cultivated in the world. An important characteristic is its resistance to heat and drought, which makes hot, dry and semi-arid areas optimal for its cultivation. Due to the climatic changes and the associated lack of water in some areas of the world, proso millet represents a good alternative or supplement to cereal cultivation. The main agricultural value of proso millet is its use as animal feed, which underlines its key role in agriculture. The modern trend in agriculture involves the application of nanoparticle-based products as micronutrients or growth promoters. The aim of our research was to investigate the effect of zinc oxide nanoparticles (ZnO-NPs) on the initial growth stages of proso millet. We evaluated the length of the plant, length of aerial parts and the root system of plants. In experiments Slovak variety 'Unikum' was used. ZnO-NPs were applied at four different concentrations (1 mg.l-1, 10 mg.l-1, 100 mg.l-1 and 300 mg.l-1) and compared with the control sample. We found that the concentration of 100 mg.l-1 might be suitable for future considerations and the highest concentration of 300 mg.l-1 had an inhibitory effect on plant growth in length of the whole plant, aerial parts and most of the monitored root parameters.
References
Doğaroğlu, Z.G. & Köleli, N. (2017). TiO2 and ZnO nanoparticles toxicity in barley (Hordeum vulgare L.). Clean–Soil .Air, Water, 45 (11), 1700096. https://doi.org/10.1002/clen.201700096
Du, W., Yang, J., Peng, Q., Liang, X., Mao, H. (2019). Comparison study of zinc oxide nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere, 227, 109-116. https://doi.org/10.1016/j.chemosphere.2019.03.168
Elechtyar, N. M. & AL-Huqail, A. A. (2023). Effect of Foliar Application of Phosphorus, Zinc, and Silicon Nanoparticles along with Mineral NPK Fertilization on Yield and Chemical Compositions of Rice (Oryza sativa L.). Agriculture, 13 (5), 1061. https://doi.org/10.3390/agriculture13051061
Gomes, A. R., Matos, L.P., Guimaraes, A.T.B.G., Freitas, I.N., Luz, T.M., Silva, A.M.Silva Matos, S.G., Lima Rodrigues, A. S., Oliveira Ferreira, R., Towfiqul Islam, A. R., Rahman, M., Ragavendran, Ch., Kamaraj, Ch., Mubarak, N.M., Arias, A.H., Gomes, P.C.S., Silva, F.G., Malafaia, G. (2023). Plant-Zno nanoparticles interaction: an approach to improve guinea grass 2 (Panicum maximum) productivity and evaluation of the impacts of its ingestion 3 by freshwater teleost fish. Journal of Hazardous Materials, 451, 131173. https://doi.org/10.2139/ssrn.4326399
Hermuth, J., Janovská, D., Hlasná Čepková, P., Ustak S., Strašil Z. & Dvoráková Z. (2016). Sorghum and Foxtail Millet—Promising Crops for the Changing Climate in Central Europe. InTechOpen, 1. https://doi.org/10.5772/62642
Keshta, F. S., Shetaya, W. H. & Marzouk, E. (2023). The toxicity and uptake of bulk and nano-sized ZnO particles in wheat (Triticum aestivum) seedlings. Journal of Plant Nutrition, 46 (15), 1-16. https://doi.org/10.1080/01904167.2023.2210599
Kolenčík, M., Ernst, D., Komár, M., Urík, M., Šebesta, M., Dobročka, E., Černý, I., Illa, R., Kanike, R., Qian, Y., Feng, H., orlová, D., Kratošová, G. (2019). Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica l.) under field conditions. Nanomaterials, 9 (11), 1559. https://doi.org/10.3390/nano9111559
Meher, B. B., Sahu, S., Singhal, S., Joshi, M., Maan, P. & Gautam, S. (2020). Infuence of Green Synthesized Zinc Oxide Nanoparticles on Seed Germinantion and Seedling Growth in Wheat (Triticum aestivum). Int. J. Curr. Microbiol. App. Sci., 9 (5), 258-270. https://doi.org/10.20546/ijcmas.2020.905.029
Munir, T., Rizwan, M., Kashif, M., Shahzad, A., Ali, S., Amin, N., Zahid, R., Alam, M. F. E. & Imran, M. (2018). Effect of Zinc Oxide Nanoparticles on the Growth and Zn Uptake in Wheat (Triticum aestivum L.) by Seed Priming Method. Digest Journal of Nanomaterials & Biostructures (DJNB). 13 (1), 315.
Naderi, M.R. & Abedi, A. (2012) Application of Nanotechnology in Agriculture and Refinement of Environmental Pollutants. Journal of Nanotechnology, 11 (4), 18-26.
Nemček, L., Šebesta, M., Urík, M., Bujdoš, M., Dobročka, E. & Vávra, I. (2020). Impact of Bulk ZnO, ZnO Nanoparticles and Dissolved Zn on Early Growth Stages of Barley – A Pot Experiment. Plants, 9 (10), 1365. https://doi.org/10.3390/plants9101365
Panday, D., Bhusal, N., Das, S., & Ghalehgolabbehbahani, A. (2024). Rooted in Nature: The Rise, Challenges, and Potential of Organic Farming and Fertilizers in Agroecosystems. Sustainability, 16(4), 1530. https://doi.org/10.3390/su16041530
Plaksenkova, I., Kokina, I., Petrova, A., Jermalonoka, M., Gerbreders, V. & Krasovska, M. (2020). The impact of Zinc Oxide Nanoparticles on Cytotoxicity, Genotoxicity, and miRNA Expression in Barley (Hordeum vulgare L.) Seedlings. ScientificWorldJournal, 1, 6649746. https://doi.org/10.1155/2020/6649746
Prakash, M. G. & Chung, I. M. (2016). Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings. Acta Biologica Hungarica, 67 (3), 286-296. https://doi.org/10.1556/018.67.2016.3.6
Raskar, S., Laware, S. (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci, 3 (2), 467–473.
Reinman, T., Braden, J., Miller, N. D. and Murphy, K. M. (2024) Mineral, seed morphology, and agronomic characteristics of proso millet grown in the inland Pacific Northwest. Front. Nutr. 11, 1394136. https://doi.org/10.3389/fnut.2024.1394136
Rezaei, E. E., Webber, H., Asseng, S., Boote, K., Durand, J. L., Ewert, F., Marte, P., MacCartthy, D. S. (2023). Climate changes impacts on crop yields. Nature Review Earth& Environment, 4, 831-846. https://doi.org/10.1038/s43017-023-00491-0
Rizwan, M., Ali, S., Ali, B., Adrees, M., Arsah, M., Hussain, A., Rehman, M.Z., Waris, A. A. et al. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269–277. https://doi.org/10.1016/j.chemosphere.2018.09.120
Singh, A., Sengar, R. S., Shahi, U. P., Rajput, V. D., Minkina, T., & Ghazaryan, K. A. (2023). Prominent Effects of Zinc Oxide Nanoparticles on Roots of Rice (Oryza sativa L.) Grown under Salinity Stress. Stresses, 3(1), 33-46. https://doi.org/10.3390/stresses3010004
Sneha, M.A., Mudalagiriyappa & Vasanthi B.G. (2023). Response of Finger Millet to Nano Nitrogen and Nano Zinc for Enhancing Productivity. Biological Forum- An International Journal, 15 (10), 1470-1477.
Stałanovska, K., Szablińska-Piernik, J., Okorski, A. & Lahuta, L. B. (2023). Zinc Oxide Nanoparticles Affect Early Seedlings´Growth and Polar Metabolite Profiles of Pea (Pisum sativum L.) and Wheat (Triticum aestivum L.). Int J Mol Sci, 24 (19), 14992 https://doi.org/10.3390/ijms241914992
StatSoft, Inc. (2011). STATISTICA (data analysis software system), version 10. www.statsoft.com
Tarafdar, J. C., Raliya, R., Mahawar, H., & Rathore, I. (2014). Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research, 3, 257–262. https://doi.org/10.1007/s40003-014-0113-y
Tondey, M., Kalia, A., Singh, A., Abd-Elsalam, K., Hassan, M. M., Dheri, G. S. (2022). A comparative evaluation of the effects of seed invigoration treatments with precursor zinc salt and nano-sized zinc oxide (ZnO) particles on vegetative growth, grain yield, and quality characteristics of Zea mays. Journal of Analytical Science and Technology, 13, 40. https://doi.org/10.1186/s40543-022-00346-1
Ventura, F., Poggi, G.M., Vignudelli, M., Bosi, S., Negri, L., Fakaros, A., Dinelli, G. (2022). An Assessment of Proso Millet as an Alternative Summer Cereal Crop in the Mediterranean Basin. Agronomy, 12 (3), 609. https://doi.org/10.3390/agronomy12030609
Yadav, A., Yadav, K., Abd-Elsalam, K.A. (2023). Nanofertilizers: Types, delivery and advantages in agricultural sustainability. Agrochemicals 2(2), 296-336 https://doi.org/10.3390/agrochemicals2020019
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Lenka Tomovičová, Ľuba Ďurišová, Samuel Kšiňan, Marek Kolenčík, Dávid Ernst, Ján Gažo, Pavol Eliáš, Nikola Kotlárová, Ivan Ravza, Viktor Straka

This work is licensed under a Creative Commons Attribution 4.0 International License.