Effect of Ovarian Follicle Size on the Follicular Fluid’s Hormones in Local Iraqi Bovine

Authors

  • Hayder Mohammed Hassan Habeeb Al-Qasim Green University, Department of Animal Production, Babylon, Iraq
  • Amal Faisal Lafta Alabedi Al-Qasim Green University, Department of Animal Production, Babylon, Iraq

Keywords:

local cattle, follicle development, follicle fluid, estrogen, progesterone, testosterone, TSH

Abstract

Bovine reproductive physiology is a complex process that is closely linked to the cattle industry‘s effective production. Follicle diameter and thehormonal content offollicular fluid play an important role in determining ovum quality, overall embryo production, and bovine fertility. This study investigates the hormonal profile of follicular fluid in ovarian follicles of varying sizes in Iraqi cows. A total of 22 samples were collected from sexually mature, disease-free, and non-pregnant cows over a two-month period (July and August). Three of the follicle groups were classified: (2–5 mm), (6–9 mm), and (10–15 mm). Following visual measurement, follicular fluid was extracted, and concentrations of progesterone, estrogen, testosterone, and thyroid-stimulating hormone (TSH) were analyzed. The results showed a significant difference (p <0.0001) in progesterone levels 6–9 mm. Also, estrogen concentration was higher in 10–15 mm compared to the other groups. Testosterone concentration was higher in follicles (2–5 mm) compared to follicles (10–15 mm and 6–9 mm), respectively. Thyroid-stimulating hormone was higher in 2–5 mm compared to 10–15 mm follicles. The current outcomes participate to the thoughtful of known mechanisms of hormonal function in ovarian follicle growth in bovine species, showing that progesterone, estrogen, testosterone, and TSH are critical factors in these mechanisms.

Author Biography

  • Amal Faisal Lafta Alabedi, Al-Qasim Green University, Department of Animal Production, Babylon, Iraq

    Department of Animal Production, Al-Qasim Green University, Babylon, Iraq 51001

References

Adriaens, I., Saeys, W., Lamberigts, C., Berth, M., Geerinckx, K., Leroy, J., … Aernouts, B. (2019). Short communication: Sensitivity of estrus alerts and relationship with timing of the luteinizing hormone surge. Journal of Dairy Science, 102(2), 1775–1779. https://doi.org/10.3168/JDS.2018-15514

Alexander, E. K., Pearce, E. N., Brent, G. A., Brown, R. S., Chen, H., Dosiou, C., & … Sullivan, S. (2017). 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease during Pregnancy and the Postpartum. Thyroid, 27(3), 315–389. https://doi.org/10.1089/thy.2016.0457

Allrich, R. D. (1994). Endocrine and neural control of estrus in dairy cows. Journal of Dairy Science, 77(9), 2738–2744. https://doi.org/10.3168/JDS.S0022-0302(94)77216-7

Alrabiah, N. A., Simintiras, C. A., Evans, A. C. O., Lonergan, P., & Fair, T. (2023). Biochemical alterations in the follicular fluid of bovine peri-ovulatory follicles and their association with final oocyte maturation. Reproduction & Fertility, 4(1), e220090. https://doi.org/10.1530/RAF-22-0090

Barros, L. A., Tufik, S., & Andersen, M. L. (2015). The role of progesterone in memory: An overview of three decades. Neuroscience and Biobehavioral Reviews, 49, 193–204. https://doi.org/10.1016/j.neubiorev.2014.11.015

Berisha, B., Thaqi, G., Sinowatz, F., Schams, D., Rodler, D., & Pfaffl, M. W. (2024). Prostaglandins as local regulators of ovarian physiology in ruminants. Anatomia, Histologia, Embryologia, 53(1), e12980. https://doi.org/10.1111/AHE.12980

Díaz, P. U., Stangaferro, M. L., Gareis, N. C., Silvia, W. J., Matiller, V., Salvetti, N. R., & … Ortega, H. H. (2015). Characterization of persistent follicles induced by prolonged treatment with progesterone in dairy cows: an experimental model for the study of ovarian follicular cysts. Theriogenology, 84(7), 1149–1160. https://doi.org/10.1016/J.THERIOGENOLOGY.2015.06.015

Duncan, D. B. (1955). Multiple Range and Multiple F Tests. Biometrics, 11(1), 1–42. https://doi.org/10.2307/3001478

Evans, H. C., Briggs, E. F., Burnett, R. H., Contreras-Correa, Z. E., Duvic, M. A., Dysart, L. M., & … Memili, E. (2022). Harnessing the value of reproductive hormones in cattle production with considerations to animal welfare and human health. Journal of Animal Science, 100(7), skac177. https://doi.org/10.1093/JAS/SKAC177

Goodman, H. M. (2009). Hormonal Control of Reproduction in the Female. In Basic Medical Endocrinology (pp. 257–275). Elsevier. https://doi.org/10.1016/b978-0-12-373975-9.00013-6

Habeeb, H. M. H., Kleditz, L., Hazzard, T., Bishop, C., Stormshak, F., & Kutzler, M. A. (2023). Ovine endometrial estrogen receptor expression is altered following PG-600 administration. Veterinary Medicine and Science, 9(3), 1379–1384. https://doi.org/10.1002/vms3.1119

Hansel, W., & Convey, E. M. (1983). Physiology of the estrous cycle. Journal of Animal Science, 57(2), 404–424. http://www.ncbi.nlm.nih.gov/pubmed/6413474

Hillier, S. G., Whitelaw, P. F., & Smyth, C. D. (1994). Follicular oestrogen synthesis: the “two-cell, two-gonadotrophin” model revisited. Molecular and Cellular Endocrinology, 100(1–2), 51–54. http://www.ncbi.nlm.nih.gov/pubmed/8056158

Komar, C. M., Berndtson, A. K., Evans, A. C. O., & Fortune, J. E. (2001). Decline in Circulating Estradiol During the Periovulatory Period Is Correlated with Decreases in Estradiol and Androgen, and in Messenger RNA for P450 Aromatase and P450 17α-Hydroxylase, in Bovine Preovulatory Follicles. Biology of Reproduction, 64(6), 1797–1805. https://doi.org/10.1095/BIOLREPROD64.6.1797

Kor, N. M. (2014). The effect of corpus luteum on hormonal composition of follicular fluid from different sized follicles and their relationship to serum concentrations in dairy cows. Asian Pacific Journal of Tropical Medicine, 7S1(S1), S282–S288. https://doi.org/10.1016/S1995-7645(14)60247-9

Kruip, T. A. M., & Dieleman, S. J. (1985). Steroid hormone concentrations in the fluid of bovine follicles relative to size, quality and stage of the oestrus cycle. Theriogenology, 24(4), 395–408. https://doi.org/10.1016/0093-691X(85)90046-9

Lonergan, P., & Sánchez, J. M. (2020). Symposium review: Progesterone effects on early embryo development in cattle. Journal of Dairy Science, 103(9), 8698–8707. https://doi.org/10.3168/JDS.2020-18583

Mikkola, M., Hasler, J. F., & Taponen, J. (2019). Factors affecting embryo production in superovulated Bos taurus cattle. Reproduction, Fertility, and Development, 32(2), 104–124. https://doi.org/10.1071/RD19279

Obr, A. E., & Edwards, D. P. (2012). The biology of progesterone receptor in the normal mammary gland and in breast cancer. Molecular and Cellular Endocrinology, 357(1–2), 4–17. https://doi.org/10.1016/J.MCE.2011.10.030

Ozturk, S., & Demir, R. (2010). Particular functions of estrogen and progesterone in establishment of uterine receptivity and embryo implantation. Histology and Histopathology, 25(9), 1215–1228. https://doi.org/10.14670/HH-25.1215

Perry, G. A., Ketchum, J. N., & Quail, L. K. (2023). Importance of preovulatory estradiol on uterine receptivity and luteal function. Animal Reproduction, 20(2), e20230061. https://doi.org/10.1590/1984-3143-AR2023-0061

Read, C. C., Edwards, J. L., Schrick, F. N., Rhinehart, J. D., Payton, R. R., Campagna, S. R., & … Moorey, S. E. (2022). Preovulatory serum estradiol concentration is positively associated with oocyte ATP and follicular fluid metabolite abundance in lactating beef cattle. Journal of Animal Science, 100(7), 1–15. https://doi.org/10.1093/jas/skac136

Rosales, M., Nuñez, M., Abdala, A., Mesch, V., & Mendeluk, G. (2020). Thyroid hormones in ovarian follicular fluid: Association with oocyte retrieval in women undergoing assisted fertilization procedures. JBRA Assisted Reproduction, 24(3), 245–249. https://doi.org/10.5935/1518-0557.20200004

Sarwar, Z., Saad, M., Saleem, M., Husnain, A., Riaz, A., & Ahmad, N. (2020). Effect of follicle size on oocytes recovery rate, quality, and in vitro developmental competence in Bos indicus cows. Animal Reproduction, 17(3), e20200011. https://doi.org/10.1590/1984-3143-AR2020-0011

SAS. (2012). Statistical Analysis System, User’s Guide. Version 9.1th ed. SAS. Inst. Inc. Cary. N.C. USA.

Sirard, M. A., & Blondin, P. (1996). Oocyte maturation and IVF in cattle. Animal Reproduction Science, 42(1–4), 417–426. https://doi.org/10.1016/0378-4320(96)01518-7

Steinhoff, L., Jung, K., Meyerholz, M. M., Heidekorn-Dettmer, J., Hoedemaker, M., & Schmicke, M. (2019). Thyroid hormone profiles and TSH evaluation during early pregnancy and the transition period in dairy cows. Theriogenology, 129, 23–28. https://doi.org/10.1016/J.THERIOGENOLOGY.2019.01.023

Thompson, J. G., Lane, M., & Gilchrist, R. B. (2007). Metabolism of the bovine cumulus-oocyte complex and influence on subsequent developmental competence. Society of Reproduction and Fertility Supplement, 64, 179–190. https://doi.org/10.5661/RDR-VI-179

Downloads

Published

2025-09-30

Issue

Section

Animal Science