Response of Young Maize Plants to Rational and Above-Limit Doses of Vermicompost

Authors

  • Peter Kováčik Slovak University of Agriculture in Nitra, FAFR, Institute of Agrochemistry and Soil Science https://orcid.org/0000-0002-0185-3342
  • Jakub Neupauer Slovak University of Agriculture in Nitra, FAFR, Institute of Agrochemistry and Soil Science
  • Zafarjon Jabbarov National University of Uzbekistan, Faculty of Biology, Department of Soil Science

Keywords:

fertilization, nitrate directive, nitrogen, phytomass, maize

Abstract

In a two-year pot experiment carried out in a vegetation cage located on the premises of the Slovak University of Agriculture in Nitra, the effect of vermicompost (Vc) used at a dose 8.3 to 16.6 times higher than permitted by the Nitrates Directive on young maize plants on their phytomass was investigated. The results showed that excessive amounts of vermicompost did not have a depressing effect on the growth of young maize plants. On the contrary, they increased the production of phytomass. The legislatively determined nutrient doses should take into account the type of organic fertilizer and the different abilities of plants to convert nutrients into phytomass formation.

References

Ahmed O.H. et al. (2010). Use of zeolite in maize (Zea mays) cultivation on nitrogen, potassium and phosphorus uptake and use efficiency. International Journal of the Physical Sciences, 5(15), 2393–2401. http://www.academicjournals.org/IJPS

Blouin, M. et al. (2019). Vermicompost significantly affects plant growth. A meta-analysis. Agronomy for Sustainable Development, 39(34). https://doi.org/10.1007/s13593-019-0579-x

Bremner, J.M. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science. 55, 11–33. https://doi.org/10.1017/S0021859600021572

Cambell, C.R. & Plank, C.O. (2000). Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States. North Carolina department of agriculture and consumer services: Raleigh, NC, USA.

Cohen, J.B. (1910). Practical Organic Chemistry. MacMillan and Co.: London, UK.

Cooke, G.W. (1982). Fertilizing for Maximum Yield, 3rd ed. ELBS: Granada.

Canellas, L.P. et al. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence and plasma membrane H+-ATPhase activity in maize root. Plant Physiology, 130(4), 1951–1957. https://doi.org/10.1104/pp.007088

Dziadowiec, H., & Gonet, S.S. 1999. A Guide to the Methods for Determination of Soil Organic Matter; Prace Komisie Naukowej PTG: Warsaw, Poland.

European Commission. 1991. Directive of 12th December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC). Official Journal of the European Communities, L375 1991. 1–8.

https://eur-lex.europa.eu/legal-content/LV/TXT/?uri=OJ:L:1991:375:TOC

Fageria, N,K. et al. (1991). Growth and mineral nutrition of field crops. Marcel Dekker: New York.

Ivanič, J. et al. (1984). Výživa a hnojenie rastlín. 2. pr. vyd. Príroda: Bratislava – SZN: Praha.

Kmeťová, M., & Kováčik, P. (2014). The impact of vermicompost application on the yield parameters of maize (Zea mays L.) observed in selected phenological growth stages (BBCH-Scale). Acta fytotechnica et zootechnica, 17(4), 100–108. https://10.15414/afz.2014.17.04.100–108

Koppová, A. et al. (1955). Determination of ash-compounds in plant material by exact expeditive methods. Scientific Works of the Research Institute of Plant Production. ČSAZV: Prague-Ruzyň.

Kováčik, P. et al. (2016). Impact of foliar application of biostimulator Mg-Titanit on formation of winter oilseed rape phytomass and its titanium content. Journal of Elementology, 21(4), 1235–1251. https://doi.org/10.5601/ jelem.2016.21.2.1155

Kováčik, P. et al. (2018). Determinácia fytomasy a parametrov pôdy aplikáciou vermikompostov a vermivýluhov. 1. vyd. Nitra : Slovenská poľnohospodárska univerzita, 2018. 121 s. ISBN 978-80-552-1924-0.

Kováčik, P. et al. (2021). Parameters of radish phytomass (Raphanus sativus L.) determined by vermicompost and earthworms (Eisenia fetida). Folia Horticulturae, 33(1), 1–17. https://10.2478/fhort-2021-0017

Kováčik, P. et al. (2022). The Effect of Vermicompost and Earthworms (Eisenia fetida) Application on Phytomass and Macroelement Concentration and Tetanic Ratio in Carrot. Agronomy-Basel, 12(11), 2770. https://doi.org/10.3390/agronomy12112770

Mehlich, A. (1984). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15(12), 1409–1416. https://doi.org/10.1080/00103628409367568

Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management. 220(1-3), 242–58. https://doi.org/10.1016/j.foreco.2005.08.015

Lazcano, C. et al. (2011). Yield and fruit quality of four sweet corn hybrids (Zea mays) under conventional and integrated fertilization with vermicompost. Journal of the Acience of Food and Agrigulture, 91(7), 1244–1253. https://doi.org/10.1002/jsfa.4306

Li, Ch. et al. (2020). Effect of irrigation and fertilization regimes on grain yield, water and nitrogen productivity of mulching cultivated maize (Zea mays L.) in the Hetao Irrigation District of China. Agricultural Water Management, 232, 106065.

https://doi.org/10.1016/j.agwat.2020.106065

Lichtenthaler, H.K. (1987). Chllorophylls and Carotenoides: Pigments of Photosynthetic Biomembranes. Methods Enzymology, 148, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1

Morales-Corts, M.R. et al. (2018). Efficiency of garden waste compost teas on tomato growth and its suppressiveness against soilborne pathogens. Scientia Agricola, 75(5), 400–409. http://dx.doi.org/10.1590/1678-992X-2016-0439

Nilawonk, W. (2014). Study on the Quality and Application of Vermicompost for Agricultural Production. Potential of Vermicompost from Local Thai Earthworm and Various Organic Wastes on Agricultural Systems and Environment. Maejo University. https://10.13140/RG.2.1.2944.7209

Ning, P. et al. (2013). Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Research. 144, 19–27. http://dx.doi.org/10.1016/j.fcr.2013.01.020

Noman, A. et al. (2018). Deciphering physio-biochemical, yield, and nutritional quality attributes of water-stressed radish (Raphanus sativus L.) plants grown from Zn-Lys primed seeds. Chemosphere, 195, 175–189. https://10.1016/j.chemosphere.2017.12.059

Shrestha, J. et al. (2018). Application of nitrogen fertilizer in maize in Southern Asia: a review. Peruvian Journal of Agronomy, 2(2), 22–26. http://dx.doi.org/10.21704/pja.v2i2.1201

Šesták, Z., & Čatský, J. (1966). Methods for studying photosynthetic production of plants. Academia: Praha. (in Czech).

Švihra, J. et al. (1989). Fyziológia rastlín. Bratislava: Príroda.

Vos, J., & Bom, M. (1993) Hand-held chlorophyll meter: a promising tool to assess the nitrogen status of potato foliage. Potato Research, 36, 301–308. https://doi.org/10.1007/BF02361796

Wang, H. et al. (2009). Effects of zinc and soil moisture on photosynthetic rate and chlorophyll fluorescence parameters of maize. Biologia Plantarum, 53, 191–194. https://doi.org/10.1007/s10535-009-0033-z

Yoder, B.J., & Pettigrew-Crosby, R.E. (1995). Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 53, 199–211. https://doi.org/10.1016/0034-4257(95)00135-N

Younas, M. et al. (2021). The influence of vermicomposting on photosynthetic activity and productivity of maize (Zea mays L.) crop under semi-arid climate. PLoS One. 16(8), e0272414. https://doi.org/10.1371/journal.pone.0256450

Yu-Kui, R. et al. (2009). Stem perimeter, height and biomass of maize (Zea mays L.) grown under different N fertilization regimes in Beijing, China. International Jounal of Plant Production, 3(2), 85–90. https://ijpp.gau.ac.ir/article_644_7b212408dbd608f724c90e94211c8472.pdf

Downloads

Published

2025-09-30

Issue

Section

Plant Science