Possibilities for Increasing Biodiversity of Natural Ecosystems and Agroecosystems
Keywords:
agriculture, agricultural landscape, agroecosystems, biodiversity, biobelts, ecosystemsAbstract
The presented study addresses the issue of biodiversity, which is a fundamental element of all ecosystems. Since the reduction or loss occurs as a result of many factors, such as habitat degradation, rapidly increasing environmental pollution, worsening climate crisis, monoculture cultivation, urbanisation, and the expansion of non-native species, among others, which have serious consequences for the existence of life on Earth. For this reason, biodiversity protection is necessary, as any change threatens the existing flora, fauna, habitats and the entire society, since all of these factors lead to a deterioration in the functioning of not only natural ecosystems, but also agro-ecosystems. Especially in agricultural landscapes, it is necessary to solve the above problem with measures that would support wild organisms. One of the measures is modern biobelts, which serve to slow down or stop the reduction of biodiversity, as they address the agro-environmental-climatic aspect. The present vegetation of biobelts improves the trophic supply and increases the spatial and temporal availability of food sources for the present organisms. On the other hand, biobelts pose a risk of enriching the soil seed bank with weeds, which may later be manifested in increased weeding of cultivated crops, and the proliferation of pests also appears to be a problem. Another highly effective measure in providing multiple ecosystem services, ensuring water regulation and quality, pest and disease control, while supporting biodiversity, long-term productivity and soil quality, is the use of agroforestry. The results show that increasing diversity in natural ecosystems and agroecosystems through planned measures represents an important strategy, which leads to improved biodiversity and ecosystem services.
References
Beillouin, D., Ben-Ari, T., Malézieux, E., Seufertová, V. & Makowski, D. (2021). Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob Change Biol. 27, 4697–4710. https://doi.org/10.1111/gcb.15747
Botha, M., Siebert, S. J., van den Berg, J., Ellis, S. & Greyvenstein, B. M. (2018). Diversity patterns of selected predaceous arthropod groups in maize fields and margins in South African Highveld grassland. Agric Forest Entom. 20, 461–475. https://doi.org/10.1111/afe.12277
Bourguet, D. & Guillemaud, T. (2016). The hidden and external costs of pesticide use. Sustain Agric Rev. 19, 35–120. https://doi.org/10.1007/978-3-319-26777-7_2
Butterfield, A. L., Camhi, R. L., Rubin, C. R. & Schwalm, Ch. R. (2016). Chapter Five - Tradeoffs and Compatibilities Among Ecosystem Services: Biological. Physical and Economic Drivers of Multifunctionality. Advances in Ecological Research. 54, 207–243. https://doi.org/10.1016/bs.aecr.2015.09.002
Cardinale, B. J., Srivastava, D. S., Duffy, J. E., Wright, J. P., Downing, A. L., Sankaran, M. & Jouseau, C. (2006). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature. 443, 989–992. https://doi.org/10.1038/nature05202
Cardoso, P., Barton, P. S. & Birkhofer, K. (2020). Scientists’ warning to humanity on insect extinctions. Biol Conserv. 242, 108426. https://doi.org/10.1016/j.biocon.2020.108426
Cukor, J., Bartoška, J., Rohla, J., Sova, J. & Machálek, A. (2019). Use of aerial thermography to reduce mortality of roe deer fawns before harvest. PeerJ 7:e6923. https://doi.org/10.7717/peerj.6923
Delgado-Baquerizo, M. et al. (2020). Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 4, 210–220. https://doi.org/10.1038/s41559-019-1084-y
Ivanič Porhajašová, J., Babošová, M., Schultz, P. & Kačániová, M. (2025). The Importance of Biobelts from the Point of View of the Biodiversity of Epigeic Groups. Animal Science and Biotechnologies. 58(1). https://spasb.ro/index.php/public_html/article/view/2369/2261
Fan, K. et al. (2023). Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat Ecol Evol. 7, 113–126. https://doi.org/10.1038/s41559-022-01935-4
Furdychko, O. I. & Tymochko, I. I. (2020). Methodological bases of the concept of creation of stable ecologically steady space in agrolandscapes. Balanced nature management. 2, 60–66. https://doi.org/10.33730/2310-4678.2.2020.208809
Gaigher, R. & Samways, M. J. (2010). Surface-active arthropods in organic vineyards, integrated vineyards and natural habitat in the Cape Floristic Region. J Ins Conserv. 14(6), 595–605. https://doi.org/10.1007/s10841-010-9286-2
Galloway, A. D., Seymour, C. L., Gaigher, R. & Pryke, J. S. (2021). Organic farming promotes arthropod predators, but this depends on neighbouring patches of natural vegetation. Agric Ecosyst Environ. 310, 107295. https://doi.org/10.1016/j.agee.2020.107295
Hallmann, C. A., Foppen, R. P. B., van Turnhout, C. A. M., de Kroon, H. & Jongejans, E. (2014). Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature. 511, 341–343. https://doi.org/10.1038/nature13531
Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D. & de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. Plos One 12:e0185809. https://doi.org/10.1371/journal.pone.0185809
Hanusová, H., Juřenová, K., Hurajová, E., Vaverková, M. D. & Winkler, J. (2022). Vegetation structure of bio-belts as agro-environmentally-climatic measures to support biodiversity on arable land: A case study. AIMS Agriculture and Food. 7(4), 883–896. https://doi.org/10.3934/agrfood.2022054
Hedlund, J., Longo, S. B. & York, R. (2020). Agriculture, Pesticide Use, and Economic Development: A Global Examination (1990–2014). Rural Sociol. 85, 519–544. https://doi.org/10.1111/ruso.12303
Chamberlain, D. E. & Fuller, R. J. (2000). Local extinctions and changes in species richness of lowland farmland birds in England and Wales in relation to recent changes in agricultural land-use. Agr Ecosyst Environ. 78, 1–17. https://doi.org/10.1016/S0167-8809(99)00105-X
Kubisová, J. (2023). Biobelts are reaping unprecedented success. Almost extinct partridges have also nested in the fields. Ecology. News.sk, https://www.aktuality.sk/clanok/pI8F5Kc/biopasy-znu-nevidany-uspech-na-poliach-zahniezdili-aj-takmer-vymiznute-jarabice/
Langraf, V., Petrovičová, K., Krumpálová, Z., Svoradová, A. & Schlarmannová, J. (2021a). Dispersion of the epigeic fauna groups in the agricultural landscape. Folia Oecologica. 48(2). https://doi.org/10.2478/foecol-2021-0015
Langraf, V. et al. (2021b). Changes in the dispersion of epigeic groups of animals in different types of agricultural crops. Journal of Central European Agriculture. 22(4), 798–806. https://doi.org/10.5513/JCEA01/22.4.3220
Lavrov, V. & Grabovska, T. (2021). Methodological approaches in the study of agroecosystems’ biodiversity. Agrobiology. 2, 217–228. https://doi.org/10.33245/2310-9270-2021-167-2-217-228
Lefcheck, J. et al. (2015). Biodiverzita zvyšuje multifunkčnosť ekosystémov naprieč trofickými úrovňami a biotopmi. Nat Commun. 6, 6936. https://doi.org/10.1038/ncomms7936
Lomba, A. et al. (2022). Assessing the link between farming systems and biodiversity in agricultural landscapes: Insights from Galicia (Spain). J Environ Manage. 317, 115335. https://doi.org/10.1016/j.jenvman.2022.115335 6
Marada, P., Cukor, J., Linda, R., Vacek, Z., Vacek, S. & Havránek, F. (2019). Extensive orchards in the agricultural landscape: Effective protection against fraying damage caused by roe deer. Sustainability. 11, 1–12. https://doi.org/10.3390/su11133738
Marada, P., Cukor, J., Kuběnka, M., Linda, R., Vacek, Z. & Vacek, S. (2023). New agri-environmental measures have a direct effect on wildlife and economy on conventional agricultural land. PeerJ 11:e15000. https://doi.org/10.7717/peerj.15000
Marshall, E. J. P. et al. 2003. The role of weeds in supporting biological diversity within crop fields. Weed Res. 43, 7–89. https://doi.org/10.1046/j.1365- 3180.2003.00326.x
Marshall, D. J., Cameron, H. E. & Loreau, M. (2023). Relationships between intrinsic population growth rate, carrying capacity and metabolism in microbial populations. The ISME Journal. 17(12), 2140–2143, https://doi.org/10.1038/s41396-023-01543-5
News. (2025). Farmers struggle with pest. The weevil caused millions in damage.Publisher. https://spravy.stvr.sk/2024/07/polnohospodari-zapasia-so-skodcom-hrabos-im-sposobil-milionove-skody/
Otieno, N. E., Jacobs, S. M. & Pryke, J. S. (2022). Traditional small-scale maize farming supports greater value of arthropod diversity than conventional maize farming. J Insect Conserv. 26, 477–489. https://doi.org/10.1007/s10841-021-00330-x
Ouvrard, P. & Jacquemart, A. L. (2018). Agri-environment schemes targeting farmland bird populations also provide food for pollinating insects. Agric. and Fores. Entomology. 20, 558–574. https://doi.org/10.1111/afe.12289
Pavliska, P. L., Riegert, J., Grill S. & Šálek, M. (2018). The effect of landscape heterogeneity on population density and habitat preferences of the European hare (Lepus europaeus) in contrasting farmlands. Mammalian Biology. 88, 8–15. https://doi.org/10.1016/j.mambio.2017.11.003
Petlušová, V. & Petluš, P. (2022). Biobelts in intensively used agricultural landscapes. Our field. 3. https://nasepole.sk/biopasy-v-intenzivne-vyuzivanej-polnohospodarskej-krajine/
Robinson, C., Portier, C. J., Čavoški, A., Mesnage, R., Roger, A., Clausing, P., Whaley, P., Muilerman, H. & Lyssimachou, A. (2020). Achieving a High Level of Protection from Pesticides in Europe: Problems with the Current Risk Assessment Procedure and Solutions. Eur J Risk Regul. 11, 450–480. https://doi.org/10.1017/err.2020.18
Sánchez-Bayo, F. & Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv. 232, 8–27. https://doi.org/10.1016/J.BIOCON.2019.01.020
Shibu, J. (2012). Agroforestry for conserving and enhancing biodiversity. Agroforest Syst. 85, 1–8.
Sheahan, M., Barrett, C. B. & Goldvale, C. (2017). Human health and pesticide use in Sub-Saharan Africa. Agric Econ. 48, 27–41. https://doi.org/10.1111/agec.12384
Schai-Braun, S. C. & Hackländer, K. (2014). Home range use by the European hare (Lepus europaeus) in a structurally diverse agricultural landscape analysed at a fine temporal scale. Acta Theriologica. 59, 277–287. https://doi.org/10.1007/s13364-013-0162-9
Schai-Braun, S. C., Ruf, T., Klansek, E., Arnold, W. & Hackländer, K. (2020). Positive effects of set-asides on European hare (Lepus europaeus) populations: Leverets benefit from an enhanced survival rate. Biological Conservation. 244, 108518. https://doi.org/10.1016/j.biocon.2020.108518
Stoate, C., Báldi, A., Beja, P., Boatman, N. D., Herzon, I., Doorn, A., Snoo, G. R., Rakosy, L. & Ramwell, C. (2009). Ecological impacts of early 21st century agricultural change in Europe – A review, Journal of Environmental Management. 91(1), 22–46. https://doi.org/10.1016/j.jenvman.2009.07.005
Šálek, M. et al. (2018). Bringing diversity back to agriculture: Smaler fields and non-crop elements enhance biodiversity in intensively managed arable farmlands. Ecol. Indic. 90, 65–73. https://doi.org/10.1016/j.ecolind.2018.03.001
Šálek, M. & Zámečník, V. (2020). Historical overview and perspectives for the protection of the Czech field partridge population (Perdix perdix). In: Hurford, C., Wilson, P., Storkey, J. (eds.) The changing state of arable habitats in Europe. Springer, Cham. https://doi.org/10.1007/978-3-030-59875-4_15
Šálek, M., Riegert, J., Krivopalova, A. & Cukor, J. (2023). Small islands in the wide open sea: The importance of non-farmed habitats under power pylons for mammals in agricultural landscape. Agriculture, Ecosystems & Environment. 351, 108500. https://doi.org/10.1016/j.agee.2023.108500
Tarjuelo R., Benítez-López, A., Casas, F., Martín, C. A., García, J. T., Viñuela, J. &, Mougeot, F. (2020). Living in seasonally dynamic farmland: The role of natural and semi-natural habitats in the movements and habitat selection of a declining bird. Biol Conserv. 251, 108794. https://doi.org/10.1016/j.biocon.2020.108794
Thomine, E. et al. (2022). Using crop diversity to lower pesticide use: Socioecological approaches. Sci Total Environ. 804, 150156. https://doi.org/10.1016/j.scitotenv.2021.150156
Traba, J. & Morales, M. B. (2019). The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Scientific Reports. 9, 9473. https://doi.org/10.1038/s41598-019-45854-0
Tryjanowski, P., Hartel, T., Báldi, A., Szymański, P. & Tobolka, M. (2011). Conservation of farmland birds faces different challenges in Western and Central-Eastern Europe. Acta Ornithologica. 46(1), 1–12. https://doi.org./10.3161/000164511X589857
Vejvodová, A. (2016). Biobelts: information material for farmers. 2nd edition. Ministry of Agriculture Prague, 1–15.
Udawatta, R., Rankoth, L. & Jose, S. (2019). Agroforestry and biodiversity. Sustainability. 11(10), 1–22. https://doi.org/10.3390/su11102879
Wolfrum, S., Siebrecht, N., Papaja-Hϋlsbergen, S., Kainz, M. & Hϋlsbergen, K. J. (2014). Anecic, endogeic, epigeic or all three - acknowledging the compositional nature of earthworm ecological group data in biodiversity analysis. Proceedings of the 4th ISOFAR Scientific Conference. ‘Building Organic Bridges’, at the Organic World Congress, Istanbul, Turkey (eprint 24106). https://orgprints.dk/id/eprint/24106/1/24106%20SW%20Paper%20OWC14%20A4_revised_MM.pd
Wyckhuys, K. A. G., Bentley, J. W., Lie, R. & Fredrix, M. (2018). Maximizing farm-level uptake and diffusion of biological control innovations in today’s digital era. BioControl. 63, 133–148. https://doi.org/10.1007/s10526-017-9820-1
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jana Ivanič-Porhajášová, Ing. Mária Babošová, PhD., doc. Ing. Eva Mlyneková, PhD.

This work is licensed under a Creative Commons Attribution 4.0 International License.