The aim of the paper was to evaluate trends in inbreeding and loss of genetic diversity in four beef cattle breeds (Blonde d’Aquitaine-BA, Charolais-CH, Limousine-LI, Simmental-SM). The highest ratio of inbred animals was found in the SM breed (63.6%) and the lowest in the LI (14.1%). The highest average inbreeding intensity was found in the SM, the lowest in the BA. The amount of genetic diversity in the reference population accounting for diversity loss due to genetic drift and unequal founder contributions was the highest in the SM (6.2%), following the BA (3.5%), LI (1.1%) and CH (0.9%). The proportion of genetic diversity lost due to genetic drift was higher in BA, CH, LI than the loss of genetic diversity due to unequal founders contributions.

Keywords: beef cattle, pedigree analysis, inbreeding, genetic diversity

Introduction

Knowing the level of genetic diversity is the basis for effective breeding work with a population. Genetic diversity has economic and environmental benefits, allowing for undertaking genetic improvement of animals for economically important traits and facilitating adaptation to changing production systems (Melka et al., 2013). Trakovická et al. (2015) pointed out that several genes were determined as population’s genetic indices with potential significance of their impact on long-life production traits in endangered Pinzgau cattle. Similar results are important because in several studies were demonstrated (Kasarda and Kadlečík, 2007; McParland et al., 2007; Kadlečík et al., 2012; Pavlík et al., 2014) improvement of inbreeding intensity that negatively influenced genetic diversity status and economics of some traits. Investigation of genetic diversity requires also to estimate trends and major causes of diversity loss. The issue of animal genetic diversity loss has become crucial and needs an immediate attention to conserve the available animal genetic resources (Melka et al., 2013). Šidlová et al. (2015) studied genomic variability among cattle populations based on runs of homozygosity. Several authors have reported genetic diversity loss (Melka et al., 2013 in Guersey population, Krupa et al., 2015 in 5 breeds of pigs). Genetic diversity loss can be derived from parameters based on probability of gene origin like effective number of founders, or founder genome equivalent (f_j), effective number of founder genomes, or founder genome equivalent (f_e) and effective number of non-founders, or non-founder equivalent (f_{ne}) as described Lacy (1995), Cabalero and Toro (2000). Mészáros et al. (2015) pointed out genomic analysis importance for effective management in small and endangered populations.

The aim of the paper was to evaluate trends in inbreeding and loss of genetic diversity in four beef cattle breeds.
Association in Slovakia. Pedigree completeness, the parameters of diversity based on probability of identity by descent and based on probability of gene origin were estimated by the software Endog v.4.8 (Gutiérrez and Goyache, 2005).

2.1 Pedigree completeness parameters

The pedigree completeness has influence on estimated genetic diversity parameters. Three different measures were used to evaluate pedigree completeness and depth:
- maximum generations traced as estimated as the number of generations between an animal and its earliest ancestor;
- mean complete equivalent generations was computed as the sum over all known ancestors of the terms computed as the sum for \((1/2)n\), where \(n\) is the number of generations separating the individual to each known ancestor (Maingnel et al., 1996);
- pedigree completeness index (PCI) described by MacCluer et al. (1983):

\[
PCI = 2 \frac{C_{\text{sp}} C_{\text{dam}}}{C_{\text{sp}} + C_{\text{dam}}}
\]

where:
- \(C_{\text{sp}}\) and \(C_{\text{dam}}\) - contributions from the paternal and maternals lines

and

\[
C = \frac{1}{d} \sum_{i=1}^{d} g_i
\]

where:
- \(g_i\) - the proportion of known ancestors in generation \(i\)
- \(d\) - the number of generations that are taken into account

2.1 Genetic diversity and genetic diversity loss

Genetic diversity was evaluated according to three parameters based on the probability of identity by descent and seven measures based on probability of gene origin.

Inbreeding coefficient of an animal (\(F\)) was calculated according to algorithm of Meuwissen and Luo (1992).

The average relatedness (\(AR\)) reflects the probability that an allele randomly chosen from the whole population in pedigree belongs to a given animal (Gutiérrez et al., 2009).

The individual increase in inbreeding (\(\Delta F_i\)) was calculated by means of the classical formula where \(F_i\) is individual coefficient of inbreeding and \(t\) is the complete equivalent generation (Gutiérrez et al., 2009). The trends of inbreeding, coancestry and inbreeding gain were estimated as moving averages on birth years of animals.

Number of founders (\(f\)) was defined as ancestors with unknown parents, or animals with unknown genetic connections to other animals in pedigrees except its own progenies (Lacy, 1989). In case that all \(f\) would contribute equally the number of founders would be the same as the \(f_e\).

The effective number of founders (\(f_e\)) was estimated as the number of equally contributing founders that will produce the same genetic diversity as assessed in the population (Boichard et al., 1997), calculated as:

\[
f_e = \left[\sum_{k=1}^{r} q_k \right]^{-1}
\]

where:
- \(q_k\) - the probability of gene origin of the \(k\) ancestor

The effective number of ancestors (\(f\)) is the minimal number of ancestors necessary to explain the genetic diversity in the reference population (Boichard et al., 1997), was calculated by formula:

\[
f_e = \left[\sum_{j=1}^{r} q_j \right]^{-1}
\]

where:
- \(q_j\) - the marginal contribution of an ancestor \(j\) which is the genetic contribution made by ancestor that is not explained by other ancestors chosen before.
- \(f_e\) account for recent bottleneck and thus partially account for the loss of allelic diversity in descendant population (Boichard et al., 1997)

Founder genome equivalents (\(f_g\)) is the number of founders that would be expected to give the same level of genetic diversity in the population under study if the founders were equally represented and no loss of alleles occurred (Lacy, 1989). The \(f_g\) was calculated by the Caballero and Toro (2000) algorithm, as follows:

\[
f_g = \left[\sum_{j=1}^{N_f} \left(\frac{p_j^2}{r_j} \right) \right]^{-1}
\]

where:
- \(N_f\) - the number of founders
- \(p_j\) - the contribution of the founder
- \(r_j\) - retention of alleles. The \(f_g\) accounts for unequal contributions of founders, bottleneck and random loss of alleles due to genetic drift (Lacy, 1995)

The ratio \(f_e / f_g\) characterize the role of bottleneck in the population development. The \(f_e / f_g\) ratio measures the influence of genetic drift. Lower values of the ratio are connected with higher loss of genetic diversity due to genetic drift.

The loss of genetic diversity (GD) was derived from parameters \(f_e / f_g\). Total GD of the reference population was estimated by formula of Lacy (1995):
The genetic diversity loss due to bottleneck and genetic drift in the population was calculated as $1 - GD$. The amount of genetic diversity in the reference population considered for the loss of diversity due to unequal founder contributions (GD^*) was calculated as (Lacy, 1995):

$$GD^* = 1 - \frac{1}{2f_e}$$

Similarly, $1 - GD^*$ represented the loss of genetic diversity due to unequal founder contributions. The difference $GD^* - GD$ measures the loss of diversity by genetic drift accumulated over nonfounder generations and was calculated by Caballero and Toro (2000).

3 Results and discussion

3.1 Pedigree completeness

The BA and SM breeds had the most complete pedigrees with $PCI = 100\%$ in parental generation followed by CH (99.7\%) and LI (93.4\%). With respect to the generations of ancestors the SM showed the highest quality of pedigrees (Figure 1) with $PCI = 72.2\%$ in the fourth and 40.4\% in the fifth generation. The percentage of known ancestors in the fifth generation of the other three breeds moved from 22.6\% to 28.9\%. Average values of complete equivalent generations as well as maximum generation traced (Table 1) were comparable among evaluated breeds. Estimated pedigree quality of all four breeds showed that the parameters of genetic diversity should be compared with some caution.

3.2 Genetic diversity and genetic diversity loss

Maintaining of genetic diversity is an important part of the goals in population genetic management. In spite of strong breeder’s effort to organize outbreeding as a basic way of animal mating in many breeds a part of populations is inbred. Gutiérrez et al. (2003) found in eight Spanish beef breeds 3.7–48.3\% of inbred animals by breeds. In our study the ratio of inbred animals differs by breeds, as well. The highest average inbreeding intensity we found in the SM breed (63.6\%) and the lowest in the LI (14.1\%). The highest average inbreeding intensity we found in the SM, the lowest in the BA. Since 1990 in populations of three breeds (BA, LI and SM) average relatedness dominated. It led to increasing of inbreeding rate gain and more inbred animals were born. Intensity of inbreeding in the LI after 2003 has positive tendency in spite decreasing tendency of average relationship. The CH had similar tendency between 1990 and 2000 years. Since 1996 inbreeding intensity has increased and after 2000 year was over AR. Results in inbreeding rate and average relatedness tendencies are significantly dependence on sire selection strategy within all evaluated breeds.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>BA</th>
<th>CH</th>
<th>LI</th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedigree population</td>
<td>481</td>
<td>3,955</td>
<td>2,063</td>
<td>916</td>
</tr>
<tr>
<td>Reference population</td>
<td>109</td>
<td>1,762</td>
<td>773</td>
<td>428</td>
</tr>
<tr>
<td>Maximum generation traced</td>
<td>5.39</td>
<td>5.29</td>
<td>4.95</td>
<td>6.30</td>
</tr>
<tr>
<td>Mean complete equivalent generations</td>
<td>3.98</td>
<td>3.82</td>
<td>3.38</td>
<td>4.38</td>
</tr>
</tbody>
</table>

Table 1 Size of pedigree and reference populations and pedigree completeness

Figure 1 Reference population pedigree completeness index by the generations of the ancestors in Blonde d’Aquitaine-BA, Charolais-CH, Limousine-LI, Simmental-SM breedes
genetic diversity. Impact of genetic drift was higher in the BA (0.16) than in LI (0.18), CH (0.22) and SM (0.27). Estimated measures based on gene origin in assessed breeds are comparable with results of 9 Spanish beef cattle breeds (Gutiérrez et al., 2003), Canadian Holstein and Jersey cattle (Stachowicz et al., 2011) and Guersey breed (Melka et al., 2012). Overall, genetic diversity has been lost in BA, CH, LI and SM breeds since 1990 due to unequal contributions of founders and random genetic drift. Genetic diversity was more affected in the BA and LI populations by genetic drift than unequal founders’ contributions. Number of ancestors explaining 50% of genetic diversity was small, comparing with 10–415 ancestors in Spanish beef breeds (Gutiérrez et al., 2003) but similar results presented Stachowicz et al. (2011) and Melka et al. (2012).

Table 2

<table>
<thead>
<tr>
<th>Parameters</th>
<th>BA (180)</th>
<th>CH (1224)</th>
<th>LI (778)</th>
<th>SM (233)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of founders, (f)</td>
<td>180</td>
<td>1224</td>
<td>778</td>
<td>233</td>
</tr>
<tr>
<td>Effective number of founders, (f_e)</td>
<td>80</td>
<td>232</td>
<td>226</td>
<td>30</td>
</tr>
<tr>
<td>Effective number of ancestors, (f_a)</td>
<td>19</td>
<td>72</td>
<td>54</td>
<td>13</td>
</tr>
<tr>
<td>Founder genome equivalent, (f_g)</td>
<td>13</td>
<td>51</td>
<td>41</td>
<td>8</td>
</tr>
<tr>
<td>(f_f / f) ratio</td>
<td>0.44</td>
<td>0.18</td>
<td>0.29</td>
<td>0.13</td>
</tr>
<tr>
<td>(f_f / f_e) ratio</td>
<td>0.23</td>
<td>0.31</td>
<td>0.23</td>
<td>0.43</td>
</tr>
<tr>
<td>(f_g / f_a) ratio</td>
<td>0.16</td>
<td>0.22</td>
<td>0.18</td>
<td>0.27</td>
</tr>
<tr>
<td>Number of ancestors explaining 50% of gene pool</td>
<td>7</td>
<td>27</td>
<td>23</td>
<td>4</td>
</tr>
</tbody>
</table>
Measures of genetic diversity loss can be estimated from f_q^G (Table 3). The amount of genetic diversity in the reference population accounting for diversity loss due to genetic drift and unequal founder contributions was the highest in the SM (6.2%), following the BA (3.5%), LI (1.1%) and CH (0.9%). The proportion of genetic diversity loss due to genetic drift was higher in this study (BA, CH, LI) than the loss of genetic diversity due to unequal founder contributions. Similar results published Melka et al. (2012), Stachovicz et al. (2011). However, Tang et al. (2013) reported that the main cause of genetic diversity loss in three Chinese swine breeds was unequal genetic founders contributions.

Conclusions
The genealogic analyses of Blonde d’Aquitaine, Charolais, Limousine and Simmental indicated accumulation of inbreeding intensity and relationship among animals since 1990. All assessed breeds are small size populations also from the genetic point of view. Loss of genetic diversity is evident and was more caused by the genetic drift than unbalanced contributions of founders. Application of optimum contributions mating and increasing of population size in all assessed breeds could help maintain genetic diversity.

Acknowledgments
Slovak Agency for Science and Research is acknowledged for financial support under project APVV-14-0054 Molecular genetic diversity and production potential of Animal Genetic Resources in Slovakia.

References