The impact of genetic and non-genetic factors on somatic cell count as a monitor of udder health in Slovak Simmental dairy cows

Jozef Bujko*, Juraj Candrák, Peter Strapák, Július Žitný, Cyril Hrnčár
Slovak University of Agriculture in Nitra, Slovak Republic

Article Details: Received: 2018-05-18 | Accepted: 2018-05-22 | Available online: 2018-11-26

https://doi.org/10.15414/afz.2018.21.04.166-168

The aim of study was to evaluate the impact of genetic and non-genetic factors on somatic cells count in Slovak Simmental dairy cows in period 2009 to 2013. We observed subsequent results in dairy cows of 55,822 Slovak Simmental cattle. Data were analysed using the SAS and linear model with fixed effects of herd, years and months controls, sire, breeding type. The results of somatic cells count during the years 2009 and 2013 were as follows: the highest number of samples was analysed during 2010 (n = 288,215), where the average count was $560.48 \times 10^3 \cdot ml^{-1}$. The lowest average value of somatic cells count was of amount of $535.93 \times 10^3 \cdot ml^{-1}$ ($n = 280,732$) in 2009. The linear model represents coefficient determination $R^2 = 0.038296\% (P < 0.001)$ for SCC with all fixed effects. According to the analyses by the effects on SCC the highest effect was the effect of herd $R^2 = 0.021625$, then effect of sire $R^2 = 0.015075$. These effects were highly statistically significant ($P < 0.001$). Correlation coefficients among milk in kg, fat, protein in % with somatic cells count were $r = -0.12918$, $r = 0.04166$ and $r = 0.11423$. These coefficients were highly statistically significant ($P < 0.001$).

Keywords: dairy cows, milk production, Slovak Simmental cattle, somatic cells count and coefficient of determination

1 Introduction

The somatic cells count (SCC) of milk is widely used to monitor udder health and the milk quality (Sharif, Muhammad, 2008; Jadhav et al., 2016). The composition of milk from dairy cows is of major interest to milk producers, processors and consumers because of its health related issues and also market demand. It directly affects the economy of milk production as well as economic condition of these dairy farmers (Boro et al., 2016). Milk composition can be affected by a wide array of factors: breed, season, age, stage of lactation and diet of the animal (Savić et al., 2017; Tančin et al., 2018). Factors affecting on somatic cells count shows in publications others authors as Cerón-Muñoz et al., 2002; Souza et al., 2005; Rhone et al., 2008; Oudah, 2009; Saravanan et al., 2015 and Alhussien, Dang, 2018. The aim of study was to evaluate the impact of genetics and non-genetics factors on somatic cells count in Slovak Simmental dairy cows.

2 Materials and methods

The material for evaluation traits in population of dairy cows Slovak Simmental cattle between 2009 and 2013 years were received from of Breeding Service of Slovak republic (B.S. SR, S.E., 2014). We observed subsequent results of 55,822 in dairy cows (1,131,509 control samples) Slovak Simmental cattle: milk in kg (DMY), fat in % (DFC), protein in % (DPC) and somatic cells count (SCC). We according to divided dairy cows a breed-type S0 – cows with genetic proportion of pure Slovak Simmental blood (into 87.5%), S1 – cows with genetic proportion of pure Slovak Simmental blood (from 75% to 87.4%), S2 – cows with genetic proportion of pure Slovak Simmental blood (from 50% to 74.9%).

To determine the effect of SCC, it was divided into 4 groups according to the SCC values: I. – up to 100,000 SCC cm$^{-3}$; II. – 101–400 SCC cm$^{-3}$; III. – 401–500 SCC cm$^{-3}$; IV. – 501–1 million SCC cm$^{-3}$ and V. >1 million SCC cm$^{-3}$. The basic statistical analysis of milk production traits and SCC were performed using the Statistical Analysis System (SAS) version 9.3 (TS1M2) Enterprise Guide 5.1. (SAS, 2011). For the actual computation a linear model with fixed effects was used:

$y_{ijklm} = \mu + H_i + Y_j + S_k + D_l + c + e_{ijklm}$

*Corresponding Author: Jozef Bujko, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovak Republic, e-mail: jozef.bujko@uniag.sk

© Slovak University of Agriculture in Nitra Faculty of Agrobiology and Food Resources
where:
\(\mu \) – mean value
\(H_i \) – effect of herd
\(Y_{ij} \) – effect of years and month of controls
\(b_k \) – sire
\(c_l \) – breeding type
\(e_{ijklm} \) – residual error

3 Results and discussion

The basic traits of milk production and somatic cells count (SCC) in evaluated population of dairy cows Slovak Simmental cattle are presented in Table 1.

Figure 1 shows results of SCC by year’s evaluation and trends of rising SCC which related with negative correlation among traits of milk production (DMY, DFC and DPC) and SCC. The correlation coefficients among DMY, DFC and DPC with SCC were \(r = -0.12918 \), \(r = 0.04166 \) and \(r = 0.11423 \). These coefficients were highly statistically significant \(P < 0.001 \) (Table 2). These results are correspondence with Japertiene et al., 2016. De Freitas et al., 2017 shows correlation coefficients among DMY, DFC and DPC with SCC (\(r = -0.18116 \), \(r = 0.09046 \) and \(r = 0.08100 \)).

The results of milk traits in control samples by code of SCC were divided into 5 groups and are presented in Figure

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Statistical characteristic of DMY, DFC, DPC and SCC in dairy cows of Slovak Simmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traits</td>
<td>(n)</td>
</tr>
<tr>
<td>DMY (kg)</td>
<td>55 822</td>
</tr>
<tr>
<td>DFC (%)</td>
<td>4.10 ±0.86</td>
</tr>
<tr>
<td>DPC (%)</td>
<td>3.46 ±0.38</td>
</tr>
<tr>
<td>SCC ((\times 10^3)·ml(^{-1}))</td>
<td>594.75 ±1620.55</td>
</tr>
</tbody>
</table>

\(n \) – number of observation, \(\bar{x} \) – average, SD – standard deviation, CV – coefficient of variation, Mode – value that appears most often in a set of data, Median – value separating the higher half of a data

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Relation between SCC and traits of milk production (DMY, DFC and DPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traits</td>
<td>DMY</td>
</tr>
<tr>
<td>SCC</td>
<td>-0.12918***</td>
</tr>
</tbody>
</table>

*** \(P < 0.001 \)

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Factors affecting SCC in Slovak Simmental dairy cows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources of variability</td>
<td>(DF)</td>
</tr>
<tr>
<td>Herd</td>
<td>489</td>
</tr>
<tr>
<td>Years-month</td>
<td>59</td>
</tr>
<tr>
<td>Sire</td>
<td>907</td>
</tr>
<tr>
<td>Breeding_type</td>
<td>2</td>
</tr>
</tbody>
</table>

\(DF \) – grades of freedom, \(R \)-Square – coefficient of determination (\(R^2 \)), *** \(P < 0.001 \)
2. The average of DMY, DFC and DPC are 15.21 to 20.44, 4.10 to 4.16 and 3.36 to 3.55 by code of SCC. These results are similar with conclusions of Jattawa et al., 2012 and de Freitas et al., 2017, where values perceptual of milk traits by codes of SCC have rising tendency.

Using the linear model we have found out the coefficient determination $R^2 = 0.038296\%$ ($P < 0.001$) for SCC with all fixed effects. The analyses by the effect on SCC showed the highest effect of the effect of herd $R^2 = 0.021625$, followed by the effect of sire $R^2 = 0.015075$. These effects were highly statistically significant ($P < 0.001$) (Table 3). These results are similar with results of Cerón-Muñoz et al., 2002; Souza et al., 2005; Rhone et al., 2008; Saravanan et al., 2015; Boro et al., 2016 and Savić et al., 2017.

4. Conclusions

The results confirm that the effect of herd on somatic cells count was higher $R^2 = 0.021625\%$, than the effect of sire $R^2 = 0.015075\%$. These effects were significant ($P < 0.0001$). For comparison, the correlation among evaluated somatic cells count (SCC) and traits of milk production (milk in kg, fat and proteins in %) were lower and negative $r = -0.12918$, $r = 0.04166$ and $r = 0.11423$. These results were statistical high significant ($P < 0.0001$).

Acknowledgements

This project was supported by the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences (VEGA) (Project No. 1/0742/17). Authors also would like thanks the Breeding Services of the Slovak Republic (B.S. SR, S.E.) for providing data processing.

References

