Yield of Elymus elongatus and Secale cereanum on marginal soils in Central Europe.

Authors

Keywords:

Elymus elongatus, Secale cereanum, green phytomass yield, marginal soils, mineral nutrition

Abstract

This research was focused on a production potential of tall wheatgrass (TW) and perennial rye (PR) grown in marginal and contrasting soil climatic conditions under the following mineral nutrition: (a) intensive nutrition of 245.0 kg/ha NPK, (b) semi-intensive nutrition of 122.5 kg/ha NPK and  (c) untreated control of  0.0 kg/ha NPK. The large-scale pilot field experiments with two varieties of TW: Szarvasi-1 and Alkar as PR: Kriszta and Gergő were carried out on 4 research sites during 4 years (2016/17 to 2019/20). Despite the contrasting soil conditions, yields were variously affected by (i) nutrition, (ii) site, (iii) variety and (iv) year (the order based on their F-ratios).  A dry matter (DM) yield of 5.29 t/ha on average was found, it ranged from 0.01 to 13.46 t/ha. Average - minimal - maximal variety yields were as follows: Szarvasi-1 6.01 - 1.05 - 13.46 t/ha, Alkar 5.86 - 0.62 - 12.90 t/ha, Kriszta 5.06 - 0.01 - 13.21 t/ha and Gergő 4.25 - 0.05 - 10.60 t/ha. Under intensive or semi-intensive nutrition both crops are suitable for all types of tested marginal soils. TW better tolerated unexpected water-logging that occurred on Site-2 with heavy clay soil than PR, while PR is more suitable for light sandy soil. The following average DM yields were obtained under intensive nutrition on the most productive Site-3 with heavy soil: 11.77 t/ha Szarvasi-1, 10.14 t/ha Alkar, 8.01 t/ha Kriszta and 7.75 t/ha Gergő, whereas on Site-1 with light sandy soil under intensive nutrition the following average yields were achieved: 7.74 t/ha Gergő, 7.72 t/ha Kriszta, 6.29 t/ha Szarvasi-1 and 5.17 t/ha Alkar. PR had about 148 mm less precipitation on average when compared to TW (187 vs. 334 mm) because of earlier harvest time while the average daily temperature was lower by about 1.9 °C on average (16.3 vs. 18.2 °C). As to varieties Kriszta and Gergő, it is probably one of the first original research papers published and probably the first research based on large-scale experiments of PR from the time when it was recognized as an energy crop.

References

Agostini, F., Gregory, A.S. & Richter, G.M. (2015). Carbon sequestration by perennial energy crops: Is the jury still out? Bioenergy Res., 8, p. 1057–1080, http://doi: 10.1007/s12155-014-9571-0

Bernas, J., Moudrý, J., Kopecký, M., Konvalina, P. & Štěrba, Z. (2019). Szarvasi-1 and its potential to become a substitute for maize which is grown for the purposes of biogas plants in the Czech Republic. Agronomy, 98 (9), 21 p., http://doi:10.3390/agronomy9020098

Borrajo, C.I. & Sánchez-Moreiras, A.M. (2018). Morpho-physiological responses of tall wheatgrass populations to different levels of water stress. PLoS, 13 (12), article number e020928, http://doi:10.1371/journal.pone.0209281

Ciria, C.S., Barro, R., Sanz, M. & Ciria, P. (2020). Long-Term Yield and Quality Performance of Perennial Energy Grasses (Agropyron spp.) on Marginal Land. Agronomy, 10, 1051, http://doi:10.3390/agronomy10071051

Csete, S., Stranczinger, Sz., Szalontai, B., Farkas, A., Pál, R.W.. Salamon-Albert, E., Kocsis, M., Tóvári, P., Vojtela, T., Dezső, J., Walcz, I., Janowszky, Zs., Janowszky, J. & Borhidi, A. (2011). Tall Wheatgrass Cultivar Szarvasi-1 (Elymus elongatus subsp. ponticus cv. Szarvasi-1) as a Potential Energy Crop for Semi-Arid Lands of Eastern Europe. Sustainable Growth and Applications in Renewable Energy Sources, Dr. Majid Nayeripour (Ed.), InTech, pp.269-294, http://doi:10.5772/26790

Halász, E. & Sipos, T. (2007). Experiments with perennial rye Secale cereanum in Hungary, at University of Debdrecen. Join International Conference on Long-term Experiment Agricultural Research and natural resources. Debrecen, pp. 127-131

Hauptvogel, M., Fehér, A., Prčík, M., Košecová, N. & Kováčik, M. (2022). Bioenergy potential of agricultural phytomass production in Slovakia. Ecocycles, 8(1), 16-26, http://doi:10.19040/ecocycles.v8il.217

Jafari, A.A., Elmi, A. & Bakhtiari, M. (2014). Evaluation of yield and quality traits in 17 population of tall wheatgrass (Agropyron elongatum) grown in a rainfed area of Iran, under two cutting management. Rom. Agric. Res., 31, 792–797.

Kolektív, (2000). Morphogenetic classification system of soils of Slovakia. Basal reference taxonomy. 1st ed. Research Institute of Soil Science and Soil Conservation, Bratislava, 76 p.

Kopecký, M., Mráz, P., Kolář, L., Váchalová, R., Bernas, J., Konvalina, P., Perná, K., Murindangabo, Y. & Menšík, L. (2021) Effect of fertilization on the energy profit of tall wheatgrass and reed canary grass. Agronomy, 11(3), article number 445, http://doi:10.3390/agronomy11030445

Kron, I., Porvaz, P., Kráľová-Hricindová, A., Tóth, Š̌., Sarvaš̌, J. & Polák, M. (2017). Green harvests of three perennial energy crops and their chemical composition. International Journal of Agriculture and Environmental Research, 3(2), 2870–2883.

Makovníková, J., Houšková, B., Boris, P. & Miloš, Š. (2020). Changes in the Regulating Ecosystem Service on the Contaminated Site Used for Energy Purposes. Open Journal of Ecology, 10(9), 597-611, http://doi.org/10.4236/oje.2020.109037

Martyniak, D., Żurek, G. & Prokopiuk, K. (2017). Biomass yield and quality of wild populations of tall wheatgrass Elymus elongatus (Host.) Runemark. Biomass and Bioenergy, 101(1), 21–29, http://doi:10.1016/j.biombioe.2017.03.025

Marišová, E., Milovanovič, J., Jureková, Z., Dražič, G., Hauptvogel, M., Prčík, M., Mariš, M., Kotrla, M., Fendel, P., Ilková, Z., Gaduš, J., Popovič, V., Ikanovič, J., Yivanovič, L., Dordevič-Miloševič, S., Radovjevič, U., Kováčik, M. & Mandalová, K. (2016). Agro-energy for sustainable agriculture and rural development. Good practices from Slovakia-Serbia bilateral cooperation. Singidunum University Belgrade, 288 p.

Mehlich, A. (1984). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15, 1409-1416.

Nalepa, R.A. & Bauer, D.M. (2012). Marginal lands: The role of remote sensing in constructing landscapes for agrofuel. J. Peasant Stud., 39, 403–422, http://doi.org/10.1080/03066150.2012.665890

Pál, R. & Csete S. (2008). Comparative analysis of the weed composition of a new energy crop Elymus elongatus (Host) Runemark subsp. ponticus (Podp.) Melderis cv. Szarvasi-1 in Hungary. Journal of Plant Diseases and Proctection, 21, 215–220.

Peterson, G.M. & Galbraith, J.K. (1932) The concept of marginal land. J. Farm Econ., 14, 295–310.

Porvaz, P., Tóth, Š. & Marcin, A. (2012). Cultivation of Chinese silvergrass Miscanthus sinensis Anderss. on the East Slovak Lowland as a potential source of raw material for energy purposes. Agriculture, 58(4), 146–153. http://doi: 10.2478/v10207-012- 0016-5

Ruf, T., Audu, V., Holzhauser, K. & Emmerling, C. (2019). Bioenergy from Periodically Waterlogged Cropland in Europe: A First Assessment of the Potential of Five Perennial Energy Crops to Provide Biomass and Their Interactions with Soil. Agronomy,9, 374. http://doi:10.3390/agronomy9070374

Schneider, A., Rakszegi, M., Molnár-Láng, M. & Szakács É. (2016). Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theoretical and Applied Genetics, 129(5), 1045–1059. http://doi:10.1007/s00122-016-2682-6

Slovak Law no. 151/2016, Law Digest, Decree of the MPRV SR establishing details on agrochemical testing of soils and on the storage and use of fertilizers. https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2016/151/

Sipos, T. & Halasz, E. (2007). The role of perennial rye Secale cereale x S. montanum in sustainable agriculture. Cereal Research Communications, 35, 1073–1075, http://doi:10.1556/CRC.35.2007.2.227

Szőke-Pázsi, K., Türkösi, E. & Szakács, E. (2021). Chromosome morphology and cytomolecular characteristics of the perennial rye cultivar ‘Kriszta’. Cereal Research Communications, http://doi.org/10.1007/s42976-021-00233-2

Szakács, É., Szőke-Pázsi, K., Kalapos, B., Schneider, A., Ivanizs, L., Rakszegi, M., Vida, G., Molnár, I. & Molnár-Láng, M. (2020). 1RS arm of Secale cereanum ‘Kriszta’ confers resistance to stripe rust, improved yield components and high arabinoxylan content in wheat. Scientific Reports, 10(11), article number 1792. http://doi:10.1038/s41598-020-58419-3

Vergiev, S. (2019). Comparative study of the capacity of three plant species from the Poaceae family for erosion and flooding control of coastal areas. Sustainable Development and Innovations in Marine Technologies. Proceedings of the 18th International Congress of the International Maritime Association of the Mediterranean, IMAM, Varna, pp. 597– 602.

USDA (2008). Plant Guide Tall Wheatgrass Thinopyrum ponticum. In Liu, Z. W. & Wang, R. C., Eds.; United States Department for Agriculture Natural Resources Conservation Service USDA NRCS, National Plant Data Center: Oakland, CA, USA, 2008. Available online: https://www.plants.usda.gov/plantguide/pdf/pg_thpo7.pdf (accessed on 16 March 2022).

Downloads

Additional Files

Published

2023-07-12

Issue

Section

Plant Science